EE 330 Lecture 21

• Bipolar Process

Fall 2024 Exam Schedule

Exam 1FridayExam 2FridayExam 3FridayFinal ExamMondayPM

Sept 27 October 25 Nov 22 Dec 16 12:00 - 2:00

What is a scope probe?

Do you use a scope probe when making measurements with an oscilloscope?

What is the purpose of an oscilloscope probe?

The purpose of an oscilloscope probe is to connect a signal source to an oscilloscope so that the signal can be measured accurately: @

Probes

probe is a evice that reys a signal e measured m the test cuit to your cilloscope

Cast Reserves Expension

What is the difference between an oscilloscope and a DMM?

Tektronix DPO 3034

Characteristics

Vertical System Analog Channels

Characteristic	MSO3012 DPO3012	MSO3014 DPO3014	MSO3032 DPO3032	MSO3034 DPO3034	MSO3054 DPO3054	
Input Channels	2	4	2	4	4	
Analog Bandwidth (-3 dB)	100 MHz	100 MHz	300 MHz	300 MHz	500 MHz	
Calculated Rise Time 5 mV/div (typical)	3.5 ns	3.5 ns	1.17 ns	1.17 ns	700 ps	
Hardware Bandwidth Limits	20	MHz		20 MHz, 150 MHz		
Input Coupling		AC, DC, GND				
Input Impedance	1 MΩ±1%, 75 Ω±1%, 50 Ω±1%					
Input Sensitivity Range, 1 MΩ		1 mV/div to 10 V/div				
Input Sensitivity Range, 75 Ω, 50 Ω	1 mV/div					
Vertical Resolution	8 bits (11 bits vith Hi Res)					
Maximum Input Voltage, 1 MΩ	300 V _{RMS} with peaks ≤ ±450 V					
Maximum Input Voltage, 75 Ω, 50 Ω	5 V _{RMS} with peaks ≤ ±20 V					
DC Gain Accuracy	±1.5% for 5 mV/div and above ±2.0% for 2 mV/div ±2.5% for 1 mV/div					
Channel-to-Channel Isolation (Any Two Channels at Equal Vertical Scale)	≥100:1 at ≤100 MHz and ≥30:1 at >100 MHz up to the rated BW					

• 6 1/2 digit resolution

10 measurement functions: DC/AC voltage, DC/AC current, 2 and 4 wire resistance, diode, continuity, frequency, period

- Basic accuracy: 0.0035% DC, 0.06% AC
- 1000 V max voltage input, 3 A max current input
- 1000 readings/second
- 512 reading memory

Calibrations None

ONIST Traceable + \$210.00

ONIST Traceable With Full Data + \$315.00

Do you use a probe when making measurements with a DMM?

- 6 1/2 digit resolution
- 10 measurement functions: DC/AC voltage, DC/AC current, 2 and 4 wire resistance, diode, continuity, frequency, period
- Basic accuracy: 0.0035% DC, 0.06% AC
- 1000 V max voltage input, 3 A max current input
- 1000 readings/second
- 512 reading memory

Calibrations None NIST Traceable + \$210.00 NIST Traceable With Full Data + \$315.00

Can you make measurements with an oscilloscope without a scope probe?

Have you ever made any measurements in previous courses where a probe was useful?

Have you ever made any measurements in previous courses where a probe made measurements more difficult?

Measurement of MOSFET Model Parameters in Laboratory This Week

Will use EDU 1000 a MOS transistor array provided by Texas Instruments

Measurement Equipment:

DC Power Supply DPO 3034 Oscilloscope Signal Generator (Comment on High Z)

No scope probes! No DMM !

Review from Last Lecture

Simplified Multi-Region Model

- This is a piecewise model suitable for analytical calculations
- Can easily extend to reverse active mode but of little use
- Still need conditions for operating in the 3 regions

Review from Last Lecture

Simplified Multi-Region Model

A small portion of the operating region is missed with this model but seldom operate in the missing region

Sufficient regions of operation for most applications

Actually cutoff, forward active, and reverse active regions can be extended modestly as shown and multi-region models still are quite good

Review from Last Lecture

Further Simplified Multi-Region dc Model

A small portion of the operating region is missed with this model but seldom operate in the missing region

Determine V_{OUT}. Assume $A_{E0}=5\mu m^2$ $A_{F1}=10\mu m^2$ $J_{S}=1fA/\mu m^{2}$ $\beta=100$ $V_{AF}=200V$ Guess Q_0 and Q_1 in Forward Active Neglect $I_{\rm B}$ compared to $I_{\rm C}$ $I_0 = 11.4V/5K = 2.28mA$ $V_{OUT} = 12V - I_1 \bullet 2K$ $\begin{cases} I_0 = J_S A_{E0} e^{\overline{V_t}} \\ I_0 = J_S A_{E0} e^{\overline{V_t}} \end{cases} \text{Since } V_{BE1} = V_{BE2} \qquad I_1 = \frac{A_{E1}}{A_{E2}} I_0 \end{cases}$ $I_1 = (10 \mu m^2 / 5 \mu m^2) 2.28 m A = 4.56 m A$ $V_{OUT} = 12V - 4.56mA \bullet 2K = 2.88V$

Verification of state and model of Q_0 and Q_1 :

Determine V_{OUT} . Assume $A_{E0}=5\mu m^2$ $A_{E1}=10\mu m^2$ $J_S=1fA/\mu m^2$ $\beta=100$ $V_{AF}=200V$

$$V_{OUT} = 12V - 4.56mA \bullet 2K = 2.88V$$

Observe:

Solution did not depend on J_S , V_{AF} , and only on assumption that β is large!

Current in transistor pair Q_0 and Q_1 have an interesting relationship

This Q₀ Q₁ interconnection is called a Current Mirror

Current Mirror

If Q_1 and Q_2 are in Forward Active Region and β is large

$$\begin{cases} I_0 = J_S A_{E0} e^{\frac{V_{BE1}}{V_t}} \\ I_1 = J_S A_{E1} e^{\frac{V_{BE2}}{V_t}} \end{cases} \qquad I_1 = \frac{A_{E1}}{A_{E2}} I_0$$

The Current Mirror is a very useful circuit !

Current Mirror can also be made with pnp transistors !

 $I_{p1} =$

Current Mirror

If M₀ and M₁ are in Saturation $\begin{cases}
I_0 = \frac{\mu C_{OX} W_0}{2L_0} (V_{GS0} - V_{TH})^2 & \text{Since } V_{GS0} = V_{GS1} \\
I_1 = \frac{\mu C_{OX} W_1}{2L_1} (V_{GS1} - V_{TH})^2 & I_1 = \frac{W_1}{L_1} \frac{L_0}{W_0} I_0
\end{cases}$

The is also a Current Mirror

The Current Mirror is a very useful circuit ! Current Mirror can also be made with p-channel transistors !

Bipolar Process Description

p-substrate epi

Components Shown

- Vertical npn BJT
- Lateral pnp BJT
- JFET
- Diffusion Resistor
- Diode (and varactor)

Note: Features intentionally not to scale to make it easier to convey more information on small figures

- Much processing equipment is same as used for MOS processes so similar minimum-sized features can be made
- But will see that there are some fundamental issues that typically make bipolar circuits large

- Small number of masks
- Most not critical alignment / size

(MASK #7)

		Dimension
1.	n ⁺ buried collector diffusion (Yellow, Mask #1)	
	1.1 Width	3λ
	1.2 Overlap of p-base diffusion (for vertical npn)	2λ
	1.3 Overlap of n ⁺ emitter diffusion (for collector contact of	•
	vertical npn)	2λ
	1.4 Overlap of p-base diffusion (for collector and emitter of lateral pnp)	-2λ
	1.5 Overlap of n ⁺ emitter diffusion (for base contact of lateral pnp)	2λ
,	Isolation diffusion (Orange Mask #2)	
£.	2.1 Width	4λ
	2.2. Snacing	24λ
	2.3 Distance to n ⁺ buried collector	14λ
,	a here diffusion (Brown Mark #2)	\checkmark
5.	2.1 Width	3)
	3.2 Specing	52
	3.3 Distance to isolation diffusion	142
	3.4 Width (resistor)	3λ
	3.5 Snacing (as resistor)	3λ
1.	n ⁺ emitter diffusion (Green, Mask #4)	21
	4.1 Width	37
	4.2 Spacing	34
	4.3 p-base diffusion overlap of n emitter diffusion (emitter in base)	24
	4.4 Spacing to isolation diffusion (for collector contact)	124
	4.5 Spacing to p-base diffusion (for pallester contact of lateral pnp)	6
	4.6 Spacing to p-base diffusion (for collector contact of vertical npn)	0.4

TABLE 2C.2 Design rules for a typical bipolar process ($\lambda = 2.5 \mu$) (See Table 2C.3 in color plates for graphical interpretation)

- Note some features have very large design rules
- Will discuss implication of this later

5.	Contact (Black, Mask #5)	
	5.1 Size (exactly)	$4\lambda \times 4\lambda$
	5.2 Spacing	2λ
	5.3 Metal overlap of contact	λ
	5.4 n ⁺ emitter diffusion overlap of contact	2λ
	5.5 p-base diffusion overlap of contact	2λ
	5.6 p-base to n ⁺ emitter	3λ
	5.7 Spacing to isolation diffusion	4λ
6.	Metalization (Blue, Mask #6)	
	6.1 Width	2λ
	6.2 Spacing	2λ
	6.3 Bonding pad size	$100 \ \mu \times 100 \ \mu$
	6.4 Probe pad size	75 μ × 75 μ
	6.5 Bonding pad separation	50 µ
	6.6 Bonding to probe pad	30 µ
	6.7 Probe pad separation	30 µ
	6.8 Pad to circuitry	40 µ
	6.9 Maximum current density	$0.8 \text{ mA}/\mu$ width
7.	Passivation (Purple, Mask #7)	
	7.1 Minimum bonding pad opening	$90 \ \mu \times 90 \ \mu$
	7.2 Minimum probe pad opening	$65 \ \mu \times 65 \ \mu$

-

.

5.	Contact (Black 5.1 Size (exac 5.2 Spacing 5.3 Metal over 5.4 n ⁺ emitte 5.5 p-base diff	tly) rlap of c r diffusio fusion ov	#5) ontact on over verlap o	lap of o
Durla	Description	L	ambda	
Kule	Description	SCMOS	SUBM	DEEP
6.1	Exact contact size	2x2	3x2	2x2
6.2	Minimum active overlap	1.5	1.5	1.5
6.3	Minimum contact spacing	2	3	4
6.4	Minimum spacing to gate of transistor	2	2	2

Parameter	Typical	Tolerance ^b	Units
	Ebers-Moll mode	el parameters	
$\beta_{\rm F}$ (forward β)			
npn-vertical	100	50 to 200	
pnp-lateral		1	
$(at I_{\rm C} = 500 \ \mu {\rm A})$	10	±20%	
$(at I_{\rm C} = 200 \ \mu {\rm A})$	6	±20%	
$\beta_{\rm R}$ (reverse β)			
npn-vertical	1.5	±0.5	
pnp-lateral			
$(at I_{\rm C} = 500 \ \mu {\rm A})$	5	±20%	
$(at I_{\rm C} = 200 \ \mu {\rm A})$	3	$\pm 20\%$	
VAF (forward Early voltage)			
npn-vertical	100	±30%	v
pnp-lateral	150	±30%	v
VAR (reverse Early voltage)			
npn-vertical	150	±30%	v
pnp-lateral	150	±30%	v
$J_{\rm S}$ (saturation current density)			
npn-vertical	2.6×10^{-7}	-50%to + 100%	pA/μ^2
pnp-lateral	1.3×10^{-5}	-50%to + 100%	pA/μ emitter perimeter

TABLE 2C.4 Process parameters for a typical bipolar process^a

Parameter		Typical	Tolerance ^b	Units
		Dopi	ing	
n ⁺ emitter	?	104	±30%	10 ¹⁶ /cm ³
p-base				
Surface		105	±20%	10 ¹⁶ /cm ³
Junction	?	1	±20%	10 ¹⁶ /cm ³
Epitaxial layer	_?	0.3	±20%	10 ¹⁶ /cm ³
Substrate		0.08	±25%	10 ¹⁶ /cm ³
		Physical fe	ature size	
Diffusion depth				
n+ emitter diffusion		1.3	±5%	μ
p-base diffusion		2.6	±5%	μ
p-resistive diffusion		0.3	±5%	μ
n-epitaxial layer		10.4	±5%	μ
n+buried collector diffusion				
Into epitaxial		3.9	±5%	μ
Into substrate		7.8	±5%	μ
Oxide thickness				
Metal to epitaxial		1.4	±30%	μ
Metal to p-base		0.65	±30%	μ
Metal to n ⁺ emitter		0.4	±30%	μ

~ •

Capacitances			
Metal to epitaxial	0.022	±30%	fF/µ ²
Metal to p-base diffusion	0.045	$\pm 30\%$	fF/μ^2
Metal to n ⁺ emitter diffusion	0.078	±30%	fF/μ^2
n ⁺ buried collector to substrate (junction, bottom)	0.062	±30%	\mathbf{fF}/μ^2
Epitaxial to substrate (junction, bottom)	0.062	±30%	fF/μ^2
Epitaxial to substrate (junction, sidewall)	1.6	±30%	fF/μ perimeter
Epitaxial to p-base diffusion (junction, bottom)	0.14	±30%	fF/μ^2
Epitaxial to p-base diffusion (junction, sidewall)	7.9	±30%	fF/ μ perimeter
p-base diffusion to n ⁺ emitter diffusion (junction, bottom)	0.78	±30%	fF/μ^2
p-base diffusion to n ⁺ emitter diffusion (junction, sidewall)	3.1	±30%	fF/ μ perimeter

Parameter	Typical	Tolerance ^b	Units
]	Resistance an	d resistivity	
Substrate resistivity	16	±25%	$\Omega \cdot cm$
n ⁺ buried collector diffusion	17	±35%	Ω / \Box
Epitaxial layer	1.6	±20%	$\Omega \cdot cm$
p-base diffusion	160	±20%	Ω / \Box
p-resistive diffusion (optional)	1500	±40%	Ω / \Box
n ⁺ emitter diffusion	4.5	±30%	Ω / \Box
Metal	0.003		Ω / \Box
Contacts $(3\mu \times 3\mu)$	<4		Ω
Metal-n ⁺ emitter (contact plus series resistance to BE junction)	<1		Ω
Metal-p-base ^c (contact plus series resistance)	70		Ω
Metal-Epitaxial ^d (contact plus series resistance to BC junction)	120		Ω

Breakdown voltages, leakage currents, migration currents, and operating conditions

Reverse breakdown voltages			
n ⁺ emitter to p-base	6.9	±50 mV	v
p-base to epitaxial	70	±10	v
Epitaxial to substrate	>80		v
Maximum operating voltage	40		v
Substrate leakage current	0.16		fA/μ ²
Maximum metal current density	0.8		mA/μ width
Maximum device operating temperature (design)	125		°C
Maximum device operating temperature (physical)	225		°C

Parameter ^{a,b,c}	Vertical npn	Lateral pnp	Units
IS ^c	0.1	0.78	fA
BF	80	225	
NF	1	1	
VAF	100	150	v
IKF	100	0.1	mA
ISE	0.11	0.15	fA
NE	1.44	1.28	
BR	1.5		
NR	1	1	
VAR ^b	19	38	v
ISC		1.5	fA
NC	1.44	1.28	
RB	70	250	Ω.
RE	1	4	Ω
RC	120	130	Ω
CJE	0.62	0.48	pF
VTE	0.69	0.65	v
MJE	0.33	0.40	
TF	0.45	40	ns
CJC	1.9	0.48	pF
VJC	0.65	0.65	v
MJC	0.4	0.4	
XCJC	0.5	0	
TR	22.5	2000	ns
CJS ^d	1.30	0	pF
VJS	0.49	0	pF
MJS	0.38	0	-

SPICE model parameters of typical bipolar process

Simplified Multi-Region Model "Forward" Regions : β=β_F

	Conditions	
$I_{C} = J_{S}A_{E}e^{\frac{V_{BE}}{V_{t}}}\left(1 + \frac{V_{CE}}{V_{AF}}\right)$	V _{BE} >0.4V V _{BC} <0	
$I_{B} = \frac{J_{S}A_{E}}{\beta}e^{\frac{V_{BE}}{V_{t}}}$		Forward Active
V _{BE} =0.7V V _{CE} =0.2V	Ι _C <βΙ _B	Saturation
I _C =I _B =0	V _{BE} <0 V _{BC} <0	Cutoff

Process Parameters: { J_S , β , V_{AF} } $V_t = \frac{kT}{q}$ Design Parameters: { A_E }

• Process parameters highly process dependent

Recall:

- J_{S} highly temperature dependent as well, β modestly temperature dependent
- This model is dependent only upon emitter area, independent of base and collector area !
- Currents scale linearly with A_E and not dependent upon shape of emitter
- A small portion of the operating region is missed with this model but seldom operate in the missing region

^aParameters are defined in Chapters 3 and 4.

^bSome of these Gummel-Poon parameters differ considerably from those given in Table 2C.4. They have been obtained from curve fitting and should give good results with computer simulations. The parameters of Table 2C.4 should be used for hand analysis.

^cParameters that are strongly area-dependent are based upon an npn emitter area of 390 μ^2 and perimeter of 80 μ , a base area of 2200 μ^2 and perimeter of 200 μ , and a collector area of 10,500 μ^2 and perimeter of 425 μ . The lateral pnp has rectangular collectors and emitters spaced 10 μ apart with areas of 230 μ^2 and perimeters of 60 μ . The base area of the pnp is 7400 μ^2 and the base perimeter is 345 μ .

^dCJS is set to zero for the lateral transistor because it is essentially nonexistent. The parasitic capacitance from base to substrate, which totals 1.0 pF for this device, must be added externally to the BJT.

- In contrast to the MOSFET where process parameters are independent of geometry, the bipolar transistor model is for a specific transistor !
- <u>Area emitter factor</u> is used to model other devices
- Often multiple specific device models are given and these devices are used directly
- Often designer can not arbitrarily set A_E but rather must use parallel combinations of specific devices and layouts

Layer Mappings

 n ⁺ buried collector
 isolation diffusion (p ⁺)
 p-base diffusion
 n ⁺ emitter
 contact
 metal
 passivation opening

Notes:

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

Dimmed features with A-A' and B-B' cross sections

Detailed Description of First Photolithographic Steps Only

- Top View
- Cross-Section View

🗢 Mas	sk 1	 n ⁺ buried collector
Mas	sk 2	 isolation diffusion (p ⁺)
Mas	sk 3	 p-base diffusion
Mas	sk 4	 n ⁺ emitter
Mas	sk 5	 contact
Mas	sk 6	 metal
Mas	sk 7	 passivation opening

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

n⁺ buried collector

Mask 1: n⁺ buried collector

A-A' Section

$\downarrow \hspace{0.1cm} \downarrow \hspace{0.1cm$

Strip Photoresist

Grow Epitaxial Layer

A-A' Section

Mask 1	 n ⁺ buried collector
≕> Mask 2	 isolation diffusion (p ⁺)
Mask 3	 p-base diffusion
Mask 4	 n ⁺ emitter
Mask 5	 contact
Mask 6	 metal
Mask 7	 passivation opening

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

Isolation Diffusion

Mask 2: Isolation Deposition/Diffusion

Isolation Diffusion

Mask 1	 n ⁺ buried collector
Mask 2	 isolation diffusion (p ⁺)
⇒ Mask 3	 p-base diffusion
Mask 4	 n ⁺ emitter
Mask 5	 contact
Mask 6	 metal
Mask 7	 passivation opening

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

p-base diffusion

Mask 3: p-base diffusion

p-base Diffusion

Mask 1	 n ⁺ buried collector
Mask 2	 isolation diffusion (p ⁺)
Mask 3	 p-base diffusion
Mask 4	 n ⁺ emitter
Mask 5	 contact
Mask 6	 metal
Mask 7	 passivation opening

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

n⁺ emitter diffusion

Mask 4: n⁺ emitter diffusion

B-B' Section

Emitter diffusion typically leaves only thin base area underneath

Oxidation

A-A' Section

Mask 1	 n ⁺ buried collector
Mask 2	 isolation diffusion (p ⁺)
Mask 3	 p-base diffusion
Mask 4	 n ⁺ emitter
Mask 5	 contact
Mask 6	 metal
Mask 7	 passivation opening

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

Mask 5: contacts

Contact Openings

- Photoresist present but not shown
- Deposition and diffusion combined in slides

A-A' Section

Mask 1	 n ⁺ buried collector
Mask 2	 isolation diffusion (p ⁺)
Mask 3	 p-base diffusion
Mask 4	 n ⁺ emitter
Mask 5	 contact
Mask 6	 metal
Mask 7	 passivation opening

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

metal

Metalization

• Photoresist present but not shown

A-A' Section

Pattern Metal

A-A' Section

B-B' Section

Metalization

Pattern Metal

B-B' Section

B-B' Section

Mask Numbering and Mappings

Mask 1	 n ⁺ buried collector
Mask 2	 isolation diffusion (p ⁺)
Mask 3	 p-base diffusion
Mask 4	 n ⁺ emitter
Mask 5	 contact
Mask 6	 metal
Mask 7	 passivation opening

Notes:

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

Pad and Pad Opening

p-substrate **Epitaxial Layer** Oxidation **Metalization Protective Layer** Pad Opening Mask Pad Opening

The vertical npn transistor

- Emitter area only geometric parameter that appears in basic device model !
- B and C areas large to get top contact to these regions
- Transistor much larger than emitter
- Multiple-emitter devices often used (TTL Logic) and don't significantly increase area
- Multiple B and C contacts often used (and multiple E contacts as well if A_E large)

The vertical npn transistor

Single-emitter and Double-Emitter Transistor Base and Collector are shared

Quirks in modeling the BJT

^aParameters are defined in Chapters 3 and 4.

^bSome of these Gummel-Poon parameters differ considerably from those given in Table 2C.4. They have been obtained from curve fitting and should give good results with computer simulations. The parameters of Table 2C.4 should be used for hand analysis.

^cParameters that are strongly area-dependent are based upon an npn emitter area of 390 μ^2 and perimeter of 80 μ , a base area of 2200 μ^2 and perimeter of 200 μ , and a collector area of 10,500 μ^2 and perimeter of 425 μ . The lateral pnp has rectangular collectors and emitters spaced 10 μ apart with areas of 230 μ^2 and perimeters of 60 μ . The base area of the pnp is 7400 μ^2 and the base perimeter is 345 μ .

^dCJS is set to zero for the lateral transistor because it is essentially nonexistent. The parasitic capacitance from base to substrate, which totals 1.0 pF for this device, must be added externally to the BJT.

- In contrast to the MOSFET where process parameters are independent of geometry, the bipolar transistor model is for a specific transistor !
- <u>Area emitter factor</u> is used to model other devices
- Often multiple specific device models are given and these devices are used directly
- Often designer can not arbitrarily set A_E but rather must use parallel combinations of specific devices and layouts

Top View of Vertical npn

This looks consistent but ...

This looks consistent but ...

Lateral flow of base current causes a drop in base voltage across the base region

 $V_{\text{BRk}} \neq V_{\text{BLk}}$ $I_{\text{Ck}} = \frac{A_{\text{E}}}{7} J_{\text{S}} e^{\frac{V_{\text{BEk}}}{V_{\text{t}}}}$

What is V_{BFk}?

This looks consistent but ...

- Lateral flow of base current causes a drop in base voltage across the base region
- And that drop differs from one slice to the next
- So V_{BE} is not fixed across the slices
- Since current is exponentially related to V_{BE}, affects can be significant
- Termed base spreading resistance problem
- Causes "Current Crowding"
- Base resistance and base spreading resistance both exist and represent different phenomenon
- Strongly dependent upon layout and contact placement
- No good models to include this effect
- Major reason designer does not have control of transistor layout detail in some bipolar processes
- Similar issue does not exist in MOSFET because the corresponding gate voltage does not change with position since $I_G=0$

Top View of Vertical npn

Cross-Sectional View

What can be done about this problem ?

Top View of Vertical npn

Cross-Sectional View

What can be done about this problem ?

Top View of Vertical npn

- Often double rows of contacts used
- Area overhead can be significant
- Effects can be reduced but current flow paths are irregular
- Remember emitter area is key design variable

MOS and Bipolar Area Comparisions

How does the area required to realize a MOSFET compare to that required to realize a BJT?

Will consider a minimum-sized device in both processes

Stay Safe and Stay Healthy !

End of Lecture 21